Bounded finite set theory

Laurence Kirby

Baruch College, City University of New York

JAF 37, Florence, 2018



Arithmetic and finite set theory

The correspondence — does it work for bounded arithmetic?

FST:PA = 7:.1Ag

FST = Finite Set Theory
=ZF — Inf 4+ —Inf (+TC)

TC = Axiom of Transitive Containment



Arithmetic and finite set theory

The correspondence via Ackermann’s interpretation

Let x €4 y be the predicate expressing that the
coefficient of 2* in the binary expansion of y is 1.
Then

> (N, crn) = (V,, €).
> It M ): PA, then Acky =af <M, Ef}\/lck> IZ FST
and its ordinals are isomorphic to M.



Arithmetic and finite set theory

The correspondence via induction

» Adjunction: x;y =xU {y}

» Work in the language £(0;)

» cisdefinable: y e x < x;y=x
» PSS, consists of:

0;x=#£0
yly = x5y

X ylsz =[x 25y
yiz=xy < xz=xVz=y



Arithmetic and finite set theory

The correspondence via induction

Tarski-Givant induction:

©(0) A Vavy(p(x) A p(y) = p(x;y) — Vap(x).
PS consists of PSy together with induction for each
first order (o (with parameters). (Previale)

» PS is logically equivalent to
ZF — Inf+ =Inf 4+ TC



S

is enough to Ackermannize

PSPA == 121S3121

> If M |= I3, then Acky = I24S and the ordinals
of Acky, together with the restrictions of
addition and multiplication to them, are
isomorphic to M.

» Parsons’ Theorem transfers to set theory: the

primitive recursive set functions are those
provably total in 73,5, where...



The primitive recursive set functions

are obtained from the initial functions
> the constant function 0(¥) = 0,
» projections, and
» adjunction x;y,
by closing under
» substitutions f(X) = g(hy(X), -+ , k(X))
» and recursion of form

f00,2) = g(2@)
f(la;p],2) = h(a,p.f(a,2),f(p.2),2)



The primitive recursive set functions

include set-theoretic operators such as P, U, | J, x| =
cardinality of x, TC(x) = transitive closure of x, V,,,
and ordinal arithmetic operations +, -, x”.

IA(S(U) means: 1A,S plus "U is total".
Or equivalently: 1A(S in language expanded by a
function symbol U and axioms:

xUO0=x and xUlyz = (xUy);z

and similarly for other primitive recursive functions.



L(0:<)

"Bounded with respect to what?" — a transitive relation is needed

so we add < to our language, intended to mean the
transitive closure of the € relation.
Let PS; be the result of adding to PSy:

x£0 and x<yz & x<yVx<z

Then we define the class of /Ay formula in the
expanded language by allowing bounded
quantification of form Vy < ¢, dy < t where t is a
term. And we define 1A,S to be PS; together with
induction for A, formula in the expanded language.



PSPA — IA()SiIA()?

Proposition. Suppose V |=1AS and W is a
transitive subset of V closed under adjunction. Then

Ao formula are absolute between V and W, and
W | IAS.

» QI1: Which axioms of set theory are provable in
1A(S?

» Q2: Given M |= Iy, is there a model of 1AyS
whose ordinal arithmetic is isomorphic to M?



Which axioms of ZF are provable in
1AS?

» [A(S F the Pair Set Axiom, Extensionality,
—=Inf, and the Axiom of Foundation.

> IAS(TC,P) |, i.e. the Union Axiom. This
is because | Jx € P(TC(x)).

> IA(S(P) F Ap-Comprehension.

» Does IAyS F Ayg-Comprehension? ... If so, and
if the answer to Q2 is positive, then
IAy - AgPHP. This is because 1A(S proves a
pigeon hole principle for functions which are
sets.



Submodels of Acky,

for M =13,

» For/ C,. M : Vi =,y
> V; = 1AS(, TC, P).
» H,; is the set of all elements of V,; = Acky

whose transitive closure has cardinality < i, i.e.
all sets of hereditary cardinality < i.

» If I is closed under +, then H; = 1AS(|, TC).
» H; = P iff I is closed under exponentiation.

Vi.



Submodels of Acky,

for M =13,

> Ci={xeVy | VuEYY <x|y <i}.
> Leteyg =1, e, = 2°.
» Theorem:
(1) ViN Cy k= TAS.
(2) ViNCy = Uiff J > e; or J is closed under
addition.
B)ViNCy | Jiff J > e; or J is closed under

multiplication.

S) ViNC,y = Piff J > ¢ or J is closed under
exponentiation.



Submodels of Acky,

for M =13,

» (4)(1) Suppose I is closed under addition. Then
V] N C] |= TCiff J > er OI'JI =J.

(4)(11) V[ M CJ ’: TCiff J Z ey or
dielJ=JNe €J).
» This theorem provides examples to show that

e.g. IAS(J) ¥ TC.
» Does IAS(TC) F |J?



Sets as digraphs

(Aczel)

Each HF set x is uniquely specified by the
extensional acyclic digraph with a single source

G(x) = the membership relation restricted to TC(x); x

e a = {{{0}},{0,{0}}}
N

1

<




The ordinals of a model of 1AyS

It depends which ordinals . ..

» Q2: Given M |= IA, is there a model of IAyS
whose ordinal arithmetic is isomorphic to M?

Von Neumann ordinals (1923) (Zermelo,
Mirimanoff): n+ 1 =n;n=nU {n}
Zermelo ordinals (1908): (n+ 1), = 0;n, = {n;}

They can differ, e.g. in V; N C; with J < I, the
von Neumann ordinals are J but the Zermelo ordinals
are /.



Zermelo ordinals are simpler

in setbuilder notation

Zermelo: 6, = {{{{{{}}}}}}

Von Neumann:

6 ={{}, {U} {{H {0 AU B
WL U S A0 WL U
UH UL WL U U UL WL U
H UL WU UL UL G

Exponential growth in the length of the
representation for n means that you can’t multiply in
polynomial time!



Zermelo ordinals are simpler
as digraphs

This time, only polynomially so.



Models of 1Ay + EXp are expandable

Q2: Given M |= I, is there a model of IAyS whose ordinal arithmetic is isomorphic
to M?

Yes if M has an end extension to a model of 1>;.

Theorem: Yes if M = Exp.
Idea: Code sets by their digraph representations, e.g.

N

Id.

a = {{{0}},{0,{0}}} = the "pair of deuces" is
represented by s* = ({0}, {1}, {0, 1}, {2,3}) which
is represented in turn by s = (1,2, 3, 12).



Models of 1Ay + EXp are expandable

Definition: A o-sequence in M 1is a strictly increasing
sequence s = (s1, ..., S,) such that for each i,
0<s; <24

If s is a o-sequence, define s7 = {j < i | €ack i}
and s* to be the corresponding sequence (s7, ..., s:).

Then s; C {0,...,i — 1} and the s} are distinct and
non-empty.

The idea is to use the sequence s to represent the set
whose digraph has nodes 0O, . . ., n with an edge from
jtoijust wheni € s;.



The 28 sets whose graphs have 6 edges
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in the Zermelo arithmetic where a is the "pair of deuces"




